Close

ANSRE: ANalysis and Synthesis of Rare Events

An AFOSR MURI Project

About ANSRE

This website is created in support of a Multi-University Research Initiative (MURI) sponsored by the Air Force, under award number FA9550-20-1-0397, to analyze, understand, and synthesize rare but consequential events.

Earthquakes, tsunamis, volcanic eruptions; pandemics, stock market crashes, currency crises---all these are events that seldom occur within the ordinary spatial and/or temporal scales of a system, and yet have an enormous impact when they do occur. In Air Force applications, rare events of interest include aircraft engine failures, fatigue, and fracture in aero-structural components, lightning or bird strikes on aerospace vehicles, and countless more. The impact of these events lends practical urgency to the development of a comprehensive mathematical theory for the modeling, prediction, and prevention of rare events.

Our goal is to develop a comprehensive framework that can be used to systematically study rare events in a wide range of settings, and we will develop the mathematical and computational tools necessary to apply our framework. While these developments are intended to be foundational and general, they are grounded in---and will be applied to---realistic applications in materials science, environmental engineering, mean-field phenomena, and networks.

Key Investigators

Jose Blanchet

Professor of Management Science and Engineering

William M. Keck Faculty Scholar

Stanford University

Research Interest: Applied probability, Computational finance, MCMC, Queueing theory, Rare-event analysis, Simulation methodology, and Risk theory.

Personal Website

Wei Cai

Professor of Mechanical Engineering

Professor (by courtesy) of Materials Science and Engineering

Stanford University

Research Interest: Predicting mechanical strength of materials through theory and simulations of defect microstructures across atomic, mesoscopic and continuum scales. Developing new atomistic simulation methods for long time-scale processes, such as crystal growth and self-assembly. Introducing magnetic field in quantum simulations of electronic structure and transport.

Personal Website

Maria Cameron

Associate Professor of Mathematics

Affiliate Associate Professor of Computer Science

University of Maryland

Research Interest: Numerical methods for solving mathematical problems arising in natural sciences including geophysics, chemical physics, and biology, spliting between Hamilton-Jacobi solvers for nonlinear PDEs and greedy graph algorithms for analysis of complex networks.

Personal Website

Youssef Marzouk

Professor of Aeronautics and Astronautics

Director of Aerospace Computational Design Laboratory

Co-director of MIT Center for Computational Science and Engineering

Massachusetts Institute of Technology

Research Interest: Intersection of computation and statistical inference with physical modeling, including new methodologies for uncertainty quantification, Bayesian modeling and computation, data assimilation, experimental design, and machine learning in complex physical systems.

Personal Website

Evan Reed

Associate Professor of Materials Science and Engineering

Charles Lee Powell Faculty Scholar

Stanford University

Research Interest: Theory and modeling of nanoscale materials for electronics and energy applications, and materials at conditions of extreme temperatures, pressures, and fields. His work to date has focused on 2D materials, high pressure shock wave compression, THz radiation generation, phase change materials, materials informatics approaches, energetic materials, and photonic crystals.

Personal Website

Zhigang Suo

Allen E. and Marilyn M. Puckett Professor of Mechanics and Materials

Member of the US National Academy of Engineering

Harvard University

Research Interest: Mechanical behavior of materials and structures. Basic processes include fracture, deformation, polarization, and diffusion, driven by various thermodynamic forces (e.g., stress, electric field, electron wind, chemical potential). Applications are concerned with microelectronics, large-area electronics, soft materials, active materials, and lithium-ion batteries.

Personal Website

Vahid Tarokh

Rhodes Family Professor of Electrical and Computer Engineering

Bass Connections Endowed Professor

Professor of Mathematics

Duke University

Research Interest: Representation, modeling, inference and prediction from data such as determining how different people will respond to exposure to certain viruses, predicting rare events from small amounts of data, formulation and calculation of limits of learning from observations, and prediction of a macaque monkey's future actions from its brain waves.

Personal Website

Thrusts

Milestones

Kickoff Meeting

  • Zhigang Suo: Fractures, Fatigue and Cracking Applications Thrust. Slides

  • Vahid Tarokh: Multidimensional Dimensional Extremes Thrust. Slides

  • Evan Reed: Chemical Reactions and Large-Scale Simulations Thrust. Slides

  • Youssef Marzouk: High Dimensional Learning for Conditioning Thrust. Slides

  • Maria Cameron: Large Deviations Computations Thrust. Slides

  • Jose Blanchet: Model Misspecification and Robustness Thrust. Slides

Videos

Publications

2023–2024 Publications

Robustifying Conditional Portfolio Decisions via Optimal Transport

Nguyen, V. A., Zhang, F., Wang, S., Blanchet, J., Delage, E., & Ye, Y. (2025)
Operations Research, 73(1): 1–20. doi:10.1287/opre.2021.0243.

Efficient Scenario Generation for Heavy-Tailed Chance Constrained Optimization

Blanchet, J., Zhang, F., & Zwart, B. (2022)
Stochastic Systems, 12(1): 1–25. doi:10.1287/stsy.2021.0021.

Delay-Adaptive Learning in Generalized Linear Contextual Bandits

Blanchet, J., Xu, R., & Zhou, Z. (2025)
Mathematics of Operations Research, 49(1): 1–30. doi:10.1287/moor.2023.1358.

Sample Complexity of Variance-Reduced Distributionally Robust Q-Learning

Wang, S., Si, N., Blanchet, J., & Zhou, Z. (2024)
Journal of Machine Learning Research, 25: 1–40.

Double Pessimism is Provably Efficient for Distributionally Robust Offline Reinforcement Learning

Blanchet, J., Lu, M., Zhang, T., & Zhong, H. (2023)
NeurIPS 2023.

On the First Passage Times of Branching Random Walks in ℝd

Blanchet, J., Cai, W., Mohanty, S., & Zhang, Z. (2024)
arXiv:2404.09064. doi:10.48550/arXiv.2404.09064.

Tightness Analysis of First Passage Times of d-Dimensional Branching Random Walk

Blanchet, J., & Zhang, Z. (2024)
arXiv:2410.02635. doi:10.48550/arXiv.2410.02635.

Convolution Bounds on Quantile Aggregation

Blanchet, J., Lam, H., Liu, Y., & Wang, R. (2024)
arXiv:2007.09320.

Limit Theorems for Stochastic Gradient Descent with Infinite Variance

Blanchet, J., Mijatović, A., & Yang, W. (2024)
arXiv:2410.16340. doi:10.48550/arXiv.2410.16340.

An Efficient High-Dimensional Gradient Estimator for Stochastic Differential Equations

Wang, S., Blanchet, J., & Glynn, P. (2024)
arXiv:2407.10065. doi:10.48550/arXiv.2407.10065.

Deep Learning for Computing Convergence Rates of Markov Chains

Qu, Y., Blanchet, J., & Glynn, P. (2024)
arXiv:2405.20435. doi:10.48550/arXiv.2405.20435.

Bounding Adapted Wasserstein Metrics

Blanchet, J., Larsson, M., Park, J., & Wiesel, J. (2024)
arXiv:2407.21492. doi:10.48550/arXiv.2407.21492.

Tightening Causal Bounds via Covariate-Aware Optimal Transport

Lin, S., Gao, Z., Blanchet, J., & Glynn, P. (2025)
arXiv:2502.01164.

Wasserstein-Based Minimax Estimation of Dependence in Multivariate Regularly Varying Extremes

Zhang, X., Blanchet, J., Marzouk, Y., Nguyen, V. A., & Wang, S. (2023)
arXiv:2312.09862.

Empirical Martingale Projections via the Adapted Wasserstein Distance

Blanchet, J., Wiesel, J., Zhang, E., & Zhang, Z. (2024)
arXiv:2401.12197.

Distributionally Robust Optimization and Robust Statistics

Blanchet, J., Li, J., Lin, S., & Zhang, X. (2024)
arXiv:2401.14655.

Statistical Learning of Distributionally Robust Stochastic Control in Continuous State Spaces

Wang, S., Si, N., Blanchet, J., & Zhou, Z. (2024)
arXiv:2406.11281.

ScoreFusion: Fusing Score-Based Generative Models via KL Barycenters

Liu, H., Ye, J. T., Blanchet, J., & Si, N. (2024)
arXiv:2406.19619.

Generative Learning for Simulation of Vehicle Faults

Kuiper, P., Lin, S., Blanchet, J., & Tarokh, V. (2024)
Winter Simulation Conference (WSC) 2024.

Towards Optimal Running Times for Optimal Transport

Blanchet, J., Jambulapati, A., Kent, C., & Sidford, A. (2024)
Operations Research Letters, 52: 107054. doi:10.1016/j.orl.2023.11.007.

Stability Evaluation through Distributional Perturbation Analysis

Blanchet, J., Cui, P., Li, J., & Liu, J. (2024)
ICML 2024.

Distributionally Robust Optimization as a Scalable Framework to Characterize Extreme Value Distributions

Kuiper, P., Hasan, A., Yang, W., Ng, Y., Bidkhori, H., Blanchet, J., & Tarokh, V. (2024)
arXiv:2408.00131.

Small Sample Behavior of Wasserstein Projections, Connections to Empirical Likelihood, and Other Applications

Lin, S., Blanchet, J., Glynn, P., & Nguyen, V. A. (2024)
arXiv:2408.11753.

Cyclic random graph models predicting giant molecules in hydrocarbon pyrolysis

Ruth, P. E., Dufour-Decieux, V., Moakler, C., & Cameron, M. K. (2025)
Physical Review E, 111(034303). (Editor’s Suggestion). arXiv:2409.19141.

A Finite Expression Method for Solving High-Dimensional Committor Problems

Song, Z., Cameron, M. K., & Yang, H. (2025)
SIAM Journal on Scientific Computing, 47(1): C1–C21. doi:10.1137/23M1583612.

A predator-prey model with age-structured role-reversal

Suarez, L. C., Cameron, M., Fagan, W. F., & Levy, D. (2025)
arXiv:2502.19748.

Sharp error estimates for target measure diffusion maps with applications to the committor problem

Sule, S., Evans, L., & Cameron, M. (2025)
Applied and Computational Harmonic Analysis (minor revision). arXiv:2312.14418.

Influence of Noise on a Rotating, Softening Cantilever Beam

Cilenti, L., Cameron, M., & Balachandran, B. (2024)
International Journal of Non-Linear Mechanics, 159: 104582.

Optimal control for sampling the transition path process and estimating rates

Yuan, J., Shah, A., Bentz, C., & Cameron, M. (2024)
Communications of Nonlinear Science and Numerical Simulation, 129: 107701.

Neural McKean–Vlasov Processes: Distributional Dependence in Diffusion Processes

Yang, H., Hasan, A., Ng, Y., & Tarokh, V. (2024)
AISTATS, 262–270.

Generative Learning for Simulation of Vehicle Faults

Kuiper, P., Lin, S., Blanchet, J., & Tarokh, V. (2024)
Winter Simulation Conference 2024.

Score-Based Metropolis–Hastings Algorithms

Aloui, A., Hasan, A., Dong, J., Wu, Z., & Tarokh, V. (2025)
arXiv:2501.00467.

Natural rubber with high resistance to crack growth

Nian, G., Chen, Z., Bao, X., Tan, M. W. M., Kutsovsky, Y., & Suo, Z. (2025)
Nature Sustainability.

Polymers Resist Fatigue Crack Growth by Deconcentrating Stress

Steck, J., Ahn, C. H., & Suo, Z. (2025)
Annual Review of Materials Research, 55.

How does a polymer glass resist fatigue crack growth?

Ahn, C. H., Chen, Z., Bao, X., & Suo, Z. (2025)
Soft Matter.

Non-faradaic junction sensing

Wang, Y., Jia, K., & Suo, Z. (2024)
Nature Reviews Materials.

Ductility of a nanocomposite of glassy and rubbery polymers

Ahn, C. H., Zhang, G., & Suo, Z. (2024)
Journal of the Mechanics and Physics of Solids, 191.

Fatigue-Resistant Polymer Electrolyte Membranes for Fuel Cells

Kim, M., Zhang, G., Jang, S., Lee, S., Suo, Z., & Kim, S. M. (2024)
Advanced Materials, 36.

Rubber-glass nanocomposites fabricated using mixed emulsions

Chen, Z., Zhang, G., Luo, Y., & Suo, Z. (2024)
Proceedings of the National Academy of Sciences, 121(16): e2322684121.

Conducting Polymer Coatings Prepared by Mixed Emulsions Are Highly Conductive and Stable in Water

Zhang, G., Chen, Z., Ahn, C. H., & Suo, Z. (2024)
Advanced Materials, 36: 2306960.

Accelerated Sampling of Rare Events using a Neural Network Bias Potential

Hua, X., Ahmad, R., Blanchet, J., & Cai, W. (2023)
NeurIPS 2023 Workshop: AI for Accelerated Materials Design.

Optimal experimental design: Formulations and computations

Huan, X., Jagalur, J., & Marzouk, Y. (2024)
Acta Numerica, 33: 715–840.

Distribution learning via neural differential equations: a nonparametric statistical perspective

Marzouk, Y., Ren, Z., Wang, S., & Zech, J. (2024)
Journal of Machine Learning Research, 25(232): 1–61.

Infinite-Dimensional Diffusion Models

Pidstrigach, J., Marzouk, Y., Reich, S., & Wang, S. (2024)
Journal of Machine Learning Research, 25(414): 1–52.

Transport map unadjusted Langevin algorithms: Learning and discretizing perturbed samplers

Zhang, B. J., Marzouk, Y. M., & Spiliopoulos, K. (2025)
Foundations of Data Science, 7(3): 705–736.

Optimal Scheduling of Dynamic Transport

Tsimpos, P., Ren, Z., Zech, J., & Marzouk, Y. (2025)
COLT 2025.

Distributionally robust Gaussian process regression and Bayesian inverse problems

Zhang, X., Blanchet, J., Marzouk, Y., Nguyen, V. A., & Wang, S. (2025)
Annals of Applied Probability (to appear).

2022–2023 Publications

Dropout Training is Distributionally Robust Optimal

Blanchet, J., Kang, Y., Montiel Olea, J. L., Nguyen, V. A., & Zhang, X. (2023)
Journal of Machine Learning Research, 24: 1–60.

Optimal Sample Complexity of Reinforcement Learning for Uniformly Ergodic Discounted Markov Decision Processes

Wang, S., Blanchet, J., & Glynn, P. (2023)
arXiv:2302.07477.

Wasserstein Distributionally Robust Linear-Quadratic Estimation under Martingale Constraints

Lotidis, K., Bambos, N., Blanchet, J., & Li, J. (2023)
International Conference on Artificial Intelligence and Statistics (AISTATS), PMLR, 8629–8644.

Statistical Limit Theorems in Distributionally Robust Optimization

Blanchet, J., & Shapiro, A. (2023)
arXiv:2303.14867.

A Finite Sample Complexity Bound for Distributionally Robust Q-Learning

Wang, S., Si, N., Blanchet, J., & Zhou, Z. (2023)
AISTATS, PMLR, 3370–3398.

Detection and Reduction of Systematic Bias in High-throughput Rupture Experiments

Wu, H., Zhang, X., Zhou, Y., Blanchet, J., Suo, Z., & Lu, T. (2023)
Journal of the Mechanics and Physics of Solids, 174: 105249.

When can Regression-Adjusted Control Variates Help? Rare Events, Sobolev Embedding and Minimax Optimality

Blanchet, J., Chen, H., Lu, Y., & Ying, L. (2023)
arXiv:2305.16527.

Neural Network Accelerated Process Design of Polycrystalline Microstructures

Lin, J., Hasan, M., Acar, P., Blanchet, J., & Tarokh, V. (2023)
Materials Today Communications, 36: 106884.

Unifying Distributionally Robust Optimization via Optimal Transport Theory

Blanchet, J., Kuhn, D., Li, J., & Taskesen, B. (2023)
arXiv:2308.05414.

Efficient Scenario Generation for Heavy-Tailed Chance Constrained Optimization

Blanchet, J., Zhang, F., & Zwart, B. (2023)
Stochastic Systems.

Optimal Sample Complexity for Average Reward Markov Decision Processes

Wang, S., Blanchet, J., & Glynn, P. (2023)
arXiv:2310.08833.

Modeling Shortest Paths in Polymeric Networks using Spatial Branching Processes

Zhang, Z., Mohanty, S., Blanchet, J., & Cai, W. (2023)
arXiv:2310.18551.

Universal Gradient Descent Ascent Method for Nonconvex-Nonconcave Minimax Optimization

Zheng, T., Zhu, L., So, A. M.-C., Blanchet, J., & Li, J. (2023)
NeurIPS 2023.

Accelerated Sampling of Rare Events using a Neural Network Bias Potential

Hua, X., Ahmad, R., Blanchet, J., & Cai, W. (2023)
NeurIPS Workshop: AI for Accelerated Materials Design.

Payoff-based Learning with Matrix Multiplicative Weights in Quantum Games

Lotidis, K., Mertikopoulos, P., Bambos, N., & Blanchet, J. (2023)
NeurIPS 2023.

Representation Learning for Extremes

Hasan, A., Ng, Y., Blanchet, J., & Tarokh, V. (2023)
NeurIPS Workshop on Heavy Tails in Machine Learning.

On the Foundation of Distributionally Robust Reinforcement Learning

Wang, S., Si, N., Blanchet, J., & Zhou, Z. (2023)
arXiv:2311.09018.

Unbiased Optimal Stopping via the MUSE

Zhou, Z., Wang, G., Blanchet, J., & Glynn, P. (2023)
Stochastic Processes and their Applications, 166: 104088.

Is a High-throughput Experimental Dataset Large Enough to Accurately Estimate a Statistic?

Zhou, Y., Lin, S., Zhang, X., Wu, H., Blanchet, J., Suo, Z., & Lu, T. (2023)
Journal of the Mechanics and Physics of Solids, 105521.

Doubly Smoothed GDA: Global Convergent Algorithm for Constrained Nonconvex-Nonconcave Minimax Optimization

Zheng, T., Zhu, L., So, A. M.-C., Blanchet, J., & Li, J. (2022)
arXiv:2212.12978.

Network Evolution Controlling Strain-induced Damage and Self-healing of Elastomers with Dynamic Bonds

Yin, Y., Mohanty, S., Cooper, C. B., Bao, Z., & Cai, W. (2024)
arXiv:submit/5358548.

Sharp Error Estimates for Target Measure Diffusion Maps with Applications to the Committor Problem

Sule, S., Evans, L., & Cameron, M. (2023)
arXiv:2312.14418. Submitted to Applied and Computational Harmonic Analysis.

A Finite Expression Method for Solving High-Dimensional Committor Problems

Song, Z., Cameron, M. K., & Yang, H. (2023)
arXiv:2306.12268. Submitted to SIAM Journal on Scientific Computing.

Influence of Noise on a Rotating, Softening Cantilever Beam

Cilenti, L., Cameron, M., & Balachandran, B. (2024)
International Journal of Non-Linear Mechanics, 159: 104582. doi:10.1016/j.ijnonlinmec.2023.104582.

Optimal Control for Sampling the Transition Path Process and Estimating Rates

Yuan, J., Shah, A., Bentz, C., & Cameron, M. (2024)
Communications of Nonlinear Science and Numerical Simulation, 129: 107701. doi:10.1016/j.cnsns.2023.107701.

The Effect of Scatter of Polymer Chain Length on Strength

Tao, M., Lavoie, S., Suo, Z., & Cameron, M. (2023)
Extreme Mechanics Letters, 61: 102024. doi:10.1016/j.eml.2023.102024.

Predicting Molecule Size Distribution in Hydrocarbon Pyrolysis using Random Graph Theory

Dufour-Decieux, V., Moakler, C., Reed, E. J., & Cameron, M. (2023)
Journal of Chemical Physics, 158: 024101. doi:10.1063/5.0133641.

Computing Committors in Collective Variables via Mahalanobis Diffusion Maps

Evans, L., Cameron, M. K., & Tiwary, P. (2023)
Applied and Computational Harmonic Analysis, 64: 62–101. doi:10.1016/j.acha.2023.01.001.

Inference and Sampling of Point Processes from Diffusion Excursions

Hasan, A., Chen, Y., Ng, Y., Abdelghani, M., Schneider, A., & Tarokh, V. (2023)
Uncertainty in Artificial Intelligence (UAI).

Polyacrylamide Hydrogels VI: Synthesis-Property Relation

Wang, Y., Nian, G., Kim, J., & Suo, Z. (2022)
Journal of the Mechanics and Physics of Solids, 170.

Fracture Initiated from Corners in Brittle Soft Materials

Steck, J., Hassan, S., & Suo, Z. (2022)
Journal of the Mechanics and Physics of Solids, 170.

Self-assembled Nanocomposites of High Water Content and Load-bearing Capacity

Zhang, G., Kim, J., Hassan, S., & Suo, Z. (2022)
Proceedings of the National Academy of Sciences, 119(32): e2203962119.

Strain-stiffening Seal

Chen, B., Chen, C., Lou, Y., & Suo, Z. (2022)
Soft Matter, 18: 2992–3003.

High-throughput Experiments for Rare-event Rupture of Materials

Zhou, Y., Zhang, X., Yang, M., Pan, Y., Du, Z., Blanchet, J., Suo, Z., & Lu, T. (2022)
Matter, 5: 1–12.

Distribution learning via neural differential equations: a nonparametric statistical perspective

Marzouk, Y., Ren, Z., Wang, S., & Zech, J. (2024)
Journal of Machine Learning Research, 25(232): 1–61.

Infinite-Dimensional Diffusion Models

Pidstrigach, J., Marzouk, Y., Reich, S., & Wang, S. (2024)
Journal of Machine Learning Research, 25(414): 1–52.

Efficient Neural Network Approaches for Conditional Optimal Transport with Applications in Bayesian Inference

Wang, Z. O., Baptista, R., Marzouk, Y., Ruthotto, L., & Verma, D. (2023)
arXiv:2310.16975.

Distribution Learning via Neural Differential Equations: Minimal Energy Regularization and Approximation Theory

Marzouk, Y., Ren, Z., & Zech, J. (2025)
arXiv:2502.03795.

Score Operator Newton Transport

Chandramoorthy, N., Schaefer, F. T., & Marzouk, Y. (2024)
AISTATS, PMLR, 3349–3357.

Random Graph Models Predicting Giant Molecules in Hydrocarbon Pyrolysis

Ruth, P. E., Dufour-Decieux, V., Moakler, C., & Cameron, M. (2025)
In preparation for Physical Review E.

Modeling Fracture of Polymer Networks

Tao, M., Lavoie, S., Suo, Z., & Cameron, M. (2025)
In preparation.

2021–2022 Publications

An Efficient Jet Marcher for Computing the Quasipotential for 2D SDEs

Packal, N., & Cameron, M. (2022)
Journal of Scientific Computing (Springer) 91, 30. arXiv:2109.03424.

Most Probable Escape Paths in Periodically Driven Nonlinear Oscillators

Cilenti, L., Cameron, M., & Balachandran, B. (2022)
Chaos 32, 083140.

Computing Committors via Mahalanobis Diffusion Maps with Enhanced Sampling Data

Evans, L., Cameron, M., & Tiwary, P. (2022)
The Journal of Chemical Physics 157, 21 (10.1063/5.0122990).

Approximations for the Distribution of Perpetuities with Small Discount Rates

Blanchet, J., & Glynn, P. W. (2022)
Naval Research Logistics, 1–18.

Machine Learning For Elliptic PDEs: Fast Rate Generalization Bound, Neural Scaling Law and Minimax Optimality

Lu, Y., Chen, H., Lu, J., Ying, L., & Blanchet, J. (2022)
International Conference on Learning Representations (ICLR).

Synthetic Principal Component Design: Fast Covariate Balancing with Synthetic Controls

Lu, Y., Li, J., Ying, L., & Blanchet, J. (2022)
arXiv:2211.15241.

2020–2021 Publications

Modified Frank Wolfe in Probability Space

Kent, C., Li, J., Blanchet, J., & Glynn, P. W. (2021)
Advances in Neural Information Processing Systems, 34.

Adversarial Regression with Doubly Non-negative Weighting Matrices

Le, T., Nguyen, T., Yamada, M., Blanchet, J., & Nguyen, V. A. (2021)
Advances in Neural Information Processing Systems, 34.

Statistical Analysis of Wasserstein Distributionally Robust Estimators

Blanchet, J., Murthy, K., & Nguyen, V. A. (2021)
In Tutorials in Operations Research: Emerging Optimization Methods and Modeling Techniques with Applications (pp. 227–254). INFORMS.

Distributionally Robust Martingale Optimal Transport

Zhou, Z., Blanchet, J., & Glynn, P. W. (2021)
arXiv preprint arXiv:2106.07191.

Efficient Steady-State Simulation of High-Dimensional Stochastic Networks

Blanchet, J., Chen, X., Si, N., & Glynn, P. W. (2021)
Stochastic Systems.

Sequential Domain Adaptation by Synthesizing Distributionally Robust Experts

Taskesen, B., Yue, M. C., Blanchet, J., Kuhn, D., & Nguyen, V. A. (2021)
In International Conference on Machine Learning.

Testing Group Fairness via Optimal Transport Projections

Si, N., Murthy, K., Blanchet, J., & Nguyen, V. A. (2021)
In International Conference on Machine Learning.

Finite-Sample Regret Bound for Distributionally Robust Offline Tabular Reinforcement Learning

Zhou, Z., Bai, Q., Zhou, Z., Qiu, L., Blanchet, J., & Glynn, P. W. (2021)
In AISTATS (pp. 3331–3339). PMLR.

A Statistical Test for Probabilistic Fairness

Taskesen, B., Blanchet, J., Kuhn, D., & Nguyen, V. A. (2021)
FAccT 2021 (pp. 648–665).

Generative Archimedean Copulas

Ng, Y., Hasan, A., Elkhalil, K., & Tarokh, V. (2021)
UAI.

Atomic-Level Features for Kinetic Monte Carlo Models of Complex Chemistry from Molecular Dynamics Simulations

Dufour-Décieux, V., Freitas, R., & Reed, E. J. (2021)
The Journal of Physical Chemistry A.

Deep Extreme Value Copulas for Estimation and Sampling

Hasan, A., Elkhalil, K., Pereira, J. M., Farsiu, S., Blanchet, J. H., & Tarokh, V. (2021)
arXiv preprint arXiv:2102.09042.

Presentations

2024 Presentations

Network Ruptures By Rare Events

Suo, Z. (2024)
AFOSR MURI Review.

MURI: ANalysis and Synthesis of Rare Events

Blanchet, J. (2024)
AFOSR MURI Workshop.

Two Vignettes: First Passage Times of Branching Random Walks and Making Good Decisions with Incorrect Models

Blanchet, J. (2024)
AFOSR MURI Review.

Learning Models Of Complex Systems From Dynamics Data

Cameron, M. (2024)
AFOSR MURI Review.

Robust Modeling and Sampling of Extreme Events

Tarokh, V. (2024)
AFOSR MURI Review.

Advances in dynamical transport and conditional sampling of extreme events

Marzouk, Y. (2024)
AFOSR MURI Review.

Rare Events Controls Strength Of Polymer Networks

Cai, W. (2024)
AFOSR MURI Review.

2023 Presentations

MURI: ANalysis and Synthesis of Rare Events

Blanchet, J. (2023)
AFOSR MURI Review.

Rare Events: Bond Breaking in Polymer Networks

Cai, W. (2023)
AFOSR MURI Review.

Methods For Quantifying Rare Events

Cameron, M. (2023)
AFOSR MURI Review.

Advances in Generative Modeling and Conditional Sampling, With Application To Materials Systems

Marzouk, Y. (2023)
AFOSR MURI Review.

Resist Fatigue By Deconcentrating Stress

Suo, Z. (2023)
AFOSR MURI Review.

Robust Modeling and Sampling of Extreme Events

Tarokh, V. (2023)
AFOSR MURI Review.

2022 Presentations

ANSRE: ANalysis and Synthesis of Rare Events

Blanchet, J. (2022)
AFOSR MURI Review.

Optimal Decision Making + Model Misspecification

Blanchet, J. (2022)
AFOSR MURI Review.

Rare Events: Bond Breaking in Polymer Networks

Cai, W. (2022)
AFOSR MURI Review.

Methods for Quantifying Rare Events

Cameron, M. (2022)
AFOSR MURI Review.

Statistical transport methods for conditioning, rare event simulation, accelerated sampling, and extremes

Marzouk, Y. (2022)
AFOSR MURI Review.

High-throughput experiments for rare-event rupture

Suo, Z. (2022)
AFOSR MURI Review.

Robust Modeling and Sampling of Extreme Events

Tarokh, V. (2022)
AFOSR MURI Review.

MURI: ANalysis and Synthesis of Rare Events — Review Dec 2021 – May 2022

ANSRE Team (2022)
AFOSR MURI Review (Midyear).

2021 Presentations

Analysis and Synthesis of Rare Events — Year 1

Cameron, M. (2021)
AFOSR MURI Review.

Get in Touch